A Level Physics PROGRAMME

Contents

A Level Physics
  • Measurements and Their Errors
    • Experiment design
    • Data
    • Graphs
    • Error Analysis
    • Uncertainty calculation
    • Evaluating and concluding
  • Section 1: Particles and Radiation
    • 1.1. Atomic Structure
    • 1.2. Stable and unstable Nuclei
    • 1.3. Antiparticles and Photons
    • 1.4. Hadrons and Leptons
    • 1.5. Strange particle and conservation of properties
    • 1.6. Quarks and Antiquarks
    • 1.7. Particle Interactions
  • Section 2: Electromagnetic Radiation and Quantum Phenomena
    • 2.1. The Photoelectric Effect
    • 2.2. Energy levels in Atoms
    • 2.3. Wave-particle Duality
  • Section 3: Waves
    • 3.1. Progressive waves
    • 3.2. Wave speed
    • 3.3. Longitudinal & Transverse Waves
    • 3.4. Superposition & Interference
    • 3.5. Stationary Waves
    • 3.6. Investigating Resonance
    • 3.7. Diffraction
    • 3.8. Two-Source Interference
    • 3.9. Refraction at a Plane Surface
    • 3.10. Young’s Double-slit Experiment
    • 3.11. Critical Angle and TIR
  • Section 4: Mechanics and Materials
    • 4.1. Scalar and Vector
    • 4.2. Forces in Equilibrium
    • 4.3. Moments
    • 4.4. Centre of Mass and Moments
    • 4.5. Uniform Acceleration
    • 4.6. Displacement-Time Graphs
    • 4.7. Velocity- Time Graphs
    • 4.8. Acceleration-Time Graphs
    • 4.9. Newton’s Laws of Motion
    • 4.10. Acceleration due to Gravity
    • 4.11. Projectile Motion
    • 4.12. Drag, Lift and Terminal Speed
    • 4.13. Conservation of Momentum
    • 4.14. Force, Momentum and Impulse
    • 4.15. Work and Power
    • 4.16. Conservation of Energy
  • Section 5: Materials
    • 5.1. Density
    • 5.2. Hooke’s Law
    • 5.3. Stress and Strain
    • 5.4. The Young Modulus
    • 5.5. Stress-Strain and Force-Extension Graphs
    • 5.6. Brittle Materials
  • Section 6: Electricity
    • 6.1. Circuit Diagrams
    • 6.2. Current and Potential Difference
    • 6.3. Resistance
    • 6.4. I-V Characteristics
    • 6.5. Resistivity
    • 6.6 Determining the Resistivity of a Wire
    • 6.7. Power and Electrical Energy
    • 6.8. E.m.f. and Internal Resistance
    • 6.9. Conservation of Energy and Charge in Circuits
    • 6.10. The Potential Divider
  • Section 7: Further Mechanics
    • 7.1. Circular Motion
    • 7.2. Centripetal Force and Acceleration
    • 7.3. Simple Harmonic Motion
    • 7.4. Calculations with SHM
  • Section 8: Thermal Physics
    • 8.1. Thermal Energy Transfer
    • 8.2. The Three Gas Laws
    • 8.3. The Ideal Gas Equation
    • 8.4. Kinetic Theory and the Pressure of an Ideal Gas
    • 8.5. Kinetic Energy of Gas Molecules
    • 8.6. Development of Theories
  • Section 9: Gravitational and Electric Fields
    • 9.1. Gravitational Fields
    • 9.2. Gravitational Field Strength
    • 9.3. Gravitational Potential
    • 9.4. Orbits
    • 9.5. Electric Fields
    • 9.6. Electric Potential
    • 9.7. Comparing Electric and Gravitational Fields
  • Section 10: Capacitors
    • 10.1. Capacitors
    • 10.2. Energy stored by Capacitors
    • 10.3. Dielectrics
    • 10.4. Charging and Discharging
    • 10.5. Time constant and time to Halve
  • Section 11: Magnetic Fields
    • 11.1. Magnetic Flux Density
    • 11.2. Investigating Force on a Current-Carrying Wire
    • 11.3. Forces on Charged Particles
    • 11.4. Electromagnetic Induction
    • 11.5. Investigating Flux Linkage
    • 11.6. Faraday’s Law and Lenz’s Law
    • 11.7. Alternating Current
    • 11.8. Transformers
  • Section 12: Nuclear Physics
    • 12.1. Rutherford Scattering
    • 12.2. Measuring Nuclear Radius
    • 12.3. Nuclear Radius and Density
    • 12.4. Properties of Nuclear Radiation
    • 12.5. Background Radiation and Intensity
    • 12.6. Exponential Law of Decay
    • 12.7. Half-life and its Application
    • 12.8. Nuclear Decay
    • 12.9. Mass Defect and Binding Energy
    • 12.11. Nuclear Fission Reactor

Followed By