-
Measurements and Their Errors
- Experiment design
- Data
- Graphs
- Error Analysis
- Uncertainty calculation
- Evaluating and concluding
-
Section 1: Particles and Radiation
- 1.1. Atomic Structure
- 1.2. Stable and unstable Nuclei
- 1.3. Antiparticles and Photons
- 1.4. Hadrons and Leptons
- 1.5. Strange particle and conservation of properties
- 1.6. Quarks and Antiquarks
- 1.7. Particle Interactions
-
Section 2: Electromagnetic Radiation and Quantum Phenomena
- 2.1. The Photoelectric Effect
- 2.2. Energy levels in Atoms
- 2.3. Wave-particle Duality
-
Section 3: Waves
- 3.1. Progressive waves
- 3.2. Wave speed
- 3.3. Longitudinal & Transverse Waves
- 3.4. Superposition & Interference
- 3.5. Stationary Waves
- 3.6. Investigating Resonance
- 3.7. Diffraction
- 3.8. Two-Source Interference
- 3.9. Refraction at a Plane Surface
- 3.10. Young’s Double-slit Experiment
- 3.11. Critical Angle and TIR
-
Section 4: Mechanics and Materials
- 4.1. Scalar and Vector
- 4.2. Forces in Equilibrium
- 4.3. Moments
- 4.4. Centre of Mass and Moments
- 4.5. Uniform Acceleration
- 4.6. Displacement-Time Graphs
- 4.7. Velocity- Time Graphs
- 4.8. Acceleration-Time Graphs
- 4.9. Newton’s Laws of Motion
- 4.10. Acceleration due to Gravity
- 4.11. Projectile Motion
- 4.12. Drag, Lift and Terminal Speed
- 4.13. Conservation of Momentum
- 4.14. Force, Momentum and Impulse
- 4.15. Work and Power
- 4.16. Conservation of Energy
-
Section 5: Materials
- 5.1. Density
- 5.2. Hooke’s Law
- 5.3. Stress and Strain
- 5.4. The Young Modulus
- 5.5. Stress-Strain and Force-Extension Graphs
- 5.6. Brittle Materials
-
Section 6: Electricity
- 6.1. Circuit Diagrams
- 6.2. Current and Potential Difference
- 6.3. Resistance
- 6.4. I-V Characteristics
- 6.5. Resistivity
- 6.6 Determining the Resistivity of a Wire
- 6.7. Power and Electrical Energy
- 6.8. E.m.f. and Internal Resistance
- 6.9. Conservation of Energy and Charge in Circuits
- 6.10. The Potential Divider
-
Section 7: Further Mechanics
- 7.1. Circular Motion
- 7.2. Centripetal Force and Acceleration
- 7.3. Simple Harmonic Motion
- 7.4. Calculations with SHM
-
Section 8: Thermal Physics
- 8.1. Thermal Energy Transfer
- 8.2. The Three Gas Laws
- 8.3. The Ideal Gas Equation
- 8.4. Kinetic Theory and the Pressure of an Ideal Gas
- 8.5. Kinetic Energy of Gas Molecules
- 8.6. Development of Theories
-
Section 9: Gravitational and Electric Fields
- 9.1. Gravitational Fields
- 9.2. Gravitational Field Strength
- 9.3. Gravitational Potential
- 9.4. Orbits
- 9.5. Electric Fields
- 9.6. Electric Potential
- 9.7. Comparing Electric and Gravitational Fields
-
Section 10: Capacitors
- 10.1. Capacitors
- 10.2. Energy stored by Capacitors
- 10.3. Dielectrics
- 10.4. Charging and Discharging
- 10.5. Time constant and time to Halve
-
Section 11: Magnetic Fields
- 11.1. Magnetic Flux Density
- 11.2. Investigating Force on a Current-Carrying Wire
- 11.3. Forces on Charged Particles
- 11.4. Electromagnetic Induction
- 11.5. Investigating Flux Linkage
- 11.6. Faraday’s Law and Lenz’s Law
- 11.7. Alternating Current
- 11.8. Transformers
-
Section 12: Nuclear Physics
- 12.1. Rutherford Scattering
- 12.2. Measuring Nuclear Radius
- 12.3. Nuclear Radius and Density
- 12.4. Properties of Nuclear Radiation
- 12.5. Background Radiation and Intensity
- 12.6. Exponential Law of Decay
- 12.7. Half-life and its Application
- 12.8. Nuclear Decay
- 12.9. Mass Defect and Binding Energy
- 12.11. Nuclear Fission Reactor
|